Higher-dimensional forcing -------------------- Bernhard Irrgang

personal homepage

university homepage

3 D forcing

young set theory

photos

Morasses

A simplified (κ,1)-morass is a structure M =<< θα | α κ >,< Fαβ | α < β κ >> satisfying the following conditions:
(P0) (a) θ0 = 1, θκ = κ+, α < κ  0 < θα < κ.
(b) Fαβ is a set of order-preserving functions f : θα θβ.
(P1) |Fαβ| < κ for all α < β < κ.
(P2) If α < β < γ, then Fαγ = {f g | f ∈ Fβγ,g ∈ Fαβ}.
(P3) If α < κ, then Fα,α+1 = {id θα,fα} where fα is such that fα δ = id δ and fα(δ) θα for some δ < θα.
(P4) If α κ is a limit ordinal, β12 < α and f1 ∈ Fβ1α, f2 ∈ Fβ2α, then there are a β12 < γ < α, g ∈ Fγα and h1 ∈ Fβ1γ, h2 ∈ Fβ2γ such that f1 = g h1 and f2 = g h2.
(P5) For all α > 0, θα = {f[θβ] | β < α,f ∈ Fβα}.

Lemma
Let α < β < κ, τ12 < θα, f1,f2 ∈ Fαβ and f1(τ1) = f2(τ2). Then τ1 = τ2 and f1 τ1 = f2 τ2.

A simplified morass defines a tree < T,>.
Let T = {< α,ν >| α κ,ν < θα}.
For t =< α,ν >∈ T set α(t) = α and ν(t) = ν.
Let < α,ν >< β,τ > iff α < β and f(ν) = τ for some f ∈ Fαβ.
If s t, then f (ν(s) + 1) is uniquely determined by the lemma. So we may define πst := f (ν(s) + 1).

Lemma
The following hold:
(a) is a tree, htT (t) = α(t).
(b) If t0 t1 t2, then πt0t1 = πt1t2 πt0t1.
(c) Let s t and π = πst. If π(ν) = τ, s =< α(s) > and t =< α(t) >, then st and πst = π (ν + 1).
(d) Let γ κ, γ ∈ Lim. Let t ∈ Tγ. Then ν(t) + 1 = {rng(πst) | s t}.

Example


As example, we force ω2 ⁄→ (ω : 2)ω2 .
More precisely, we want to add a function f : [ω2]2 ω such that {ξ < α | f(ξ,α) = f(ξ,β)} is finite for all α < β < ω2.
For a,b ω2 set [a,b] := {< α,β >| α ∈ a, β ∈ b, β < α}.
Let P := {p : [ap,bp] ω | ap,bp ω2 finite }.
We set p q iff q p and α < β ∈ aq ξ ∈ (bp - bq) α p(α,ξ)p(β,ξ).
Let π : λ θ be an order-preserving map. Then π : λ θ induces maps π : λ2 θ2 and π : λ2 × ω θ2 × ω in the obvious way:
π : λ2 θ2, < γ,δ > ↦→ < π(γ)(δ) >
π : λ2 × ω θ2 × ω, < x,ε > ↦→ < π(x),ε > .

Base Case: β = 0
Then we only need to define P(1).
Let P(1) := {p ∈ P | ap,bp 1}.

Successor Case: β = α + 1
We first define P(φβ). Let it be the set of all p ∈ P such that
(1) ap,bp φβ
(2) fα-1[p], (id φα)-1[p] ∈ P(φα)
(3) p ((φβ \ φα) × (φα \ δ)) is injective
where fα and δ are like in (P3) in the definition of a simplified gap-1 morass.
For all ν φα P(ν) is already defined. For φα < ν φβ set P(ν) = {p ∈ P(φβ) | ap,bp ν}. Set σst : P(ν(s) + 1) P(ν(t) + 1),p↦→πst[p].

Limit Case: β ∈ Lim
For t ∈ Tβ set P(ν(t) + 1) = {σst[P(ν(s) + 1)] | s t} and P(λ) = {P(η) | η < λ} for λ ∈ Lim where σst : P(ν(s) + 1) P(ν(t) + 1),p↦→πst[p].

Motivation

Two-dimensional applications

Three-dimensional application

Open problems